

JANUARY 2016

DR. Z's CORNER

Conquering the FE & PE exams Examples & Applications

Topics covered in this month's column:

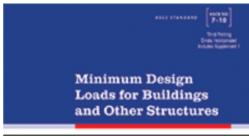
- FE CIVIL Exam Topics & Number of Questions
- ASCE-7-10 Minimum Design Loads
- Factored Loads and Factored Moments
- Matrix Computations, Inverse Matrix
- Pulley and Cable Systems
- Centroids & Moments of Inertia
- Concurrent Force Systems
- Combined Stress Problems (N+M)
- Volume Computations, Borrow Pits
- Determinate Plane Truss Analysis
- Reinforced Concrete Beam,
- Open Web Steel Joist (OWSJ) Computations

CIVIL EXAM TOPICS

Computer-Based Test (CBT)

Total Number of Questions: 110
Time: 6 hours

The new Civil FE Computer-Based Test (CBT) consists of 110 multiple-choice questions (Each problem only one question) the examinee will have 6 hours to complete the test.


- Mathematics (Approx. 9 questions*)
- Probability and Statistics (5 questions)
- Computational Tools (5 questions)
- Ethics and Professional Practice (5 questions)
- Engineering Economics (5 questions)
- Statics (9 questions)
- Dynamics (5 questions)
- Mechanics of Materials (9 questions)
- Civil Engineering Materials (5 questions)
- Fluid Mechanics (5 questions)
- Hydraulics and Hydrologic Systems (10 questions)
- Structural Analysis (8 questions)
- Structural Design (8 questions)
- Geotechnical Engineering (12 questions)
- Transportation Engineering (10 questions)
- Environmental Engineering (8 questions)
- * Here the number of questions are the average values taken from the NCEES Reference Handbook (Version 9.1 / Computer-Based Test)

MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES

AMERICAN SOCIETY OF CIVIL ENGINEERS

ASCE / SEI 7-10

MINIMUM DESIGN LOADS FOR BUILDINGS AND OTHER STRUCTURES (7-10, THIRD PRINTING)

This document uses held the immediated figures of Units (NI) and contentury units

American Society of Civil Engineers Standards ASCE/SEI 7-10

(1) U = 1.4 (D + F)

2013 / 636 pp.

- (2) $U = 1.2(D + F + T) + 1.6(L + H) + 0.5(L_r \text{ or S or } R)$
- (3) $U = 1.2 D + 1.6 (L_r \text{ or S or } R) + (1.0 L \text{ or } 0.8 \text{ W})$
- (4) U = 1.2 D + 1.6 W + 1.0 L + 0.5 (L, or S or R)
- (5) U = 1.2 D + 1.0 E + 1.0 L + 0.2 S
- (6) U = 0.9 D + 1.6 W + 1.6 H
- (7) U = 0.9 D + 1.0 E + 1.6 H

U = design or ultimate load (kips)

D = dead load (kips) L = live load (kips)

F = loads due thefluids weight

T = loads due to temperature

H = loads due to earth pressure

 $L_r = roof live load$

S = snow load

R = rain loadW = wind load

ASCE

E = earthquake or seismic load

U = 1.2 D + 1.6 L D = DEAD LOAD

L = LIVE LOAD

Problem: (R/C Column, Load Combinations)

A R/C building column is subjected to the following loads:

Dead Load : D = 115 kipLive Load : L = 60 kip

Wind Load : W = 70 kip (compression)Wind Load : W = 105 kip (tension)

Determine the required design strength of this column.

Solution:

- (1) U = 1.4 (D + F) = 1.4 (115+0) = 161 kips
- (2) $U = 1.2 (D + F + T) + 1.6 (L + H) + 0.5 (L_r \text{ or } S \text{ or } R)$ $P_{11} = 1.2 (115) + 1.6 (60) = 234 \text{ kips}$
- (3) $U = 1.2 D + 1.6 (L_r \text{ or } S \text{ or } R) + (1.0 L \text{ or } 0.8 W)$

$$= 1.2 (115) + 1.0 (60) = 198 \text{ kips}$$

$$= 1.2 (115) + 0.8 (70) = 194 \text{ kips}$$

$$= 1.2 (115) + 0.8 (-105) = 54 \text{ kips}$$

(4) $U = 1.2 D + 1.6 W + 1.0 L + 0.5 (L_r \text{ or } S \text{ or } R)$

$$= 1.2 (115) + 1.6 (70) + 1.0 (60) = 310$$
 kips

$$= 1.2 (115) + 1.6 (-90) + 1.0 (60) = 30 \text{ kips}$$

(5) U = 1.2 D + 1.0 E + 1.0 L + 0.2 S

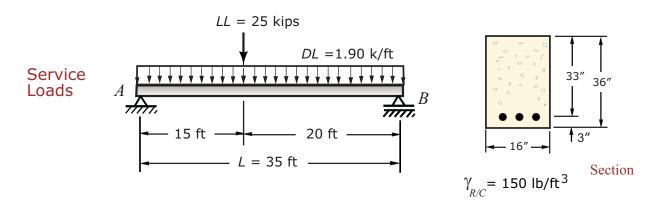
$$= 1.2 (110) + 1.0 (0) + 1.0 (60) + 0.2 (0) = 198 \text{ kips}$$

(6) U = 0.9 D + 1.6 W + 1.6 H

$$= 0.9 (115) + 1.6 (70) + 1.6 (0) = 216$$
kips

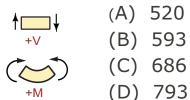
$$= 0.9 (115) + 1.6 (-105) + 1.6 (0) = -65 \text{ kips (uplift)}$$

(7) U = 0.9 D + 1.0 E + 1.6 H = 0.9 (115) = 104 kips


Answer

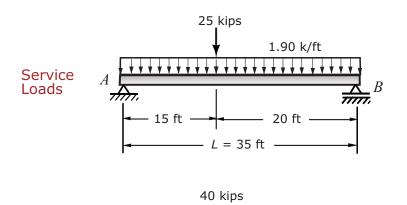
 $P_u = 310 \text{ kip (compression)}$

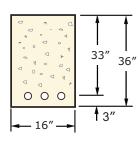
 $P_{ii} = 65 \text{ kip (tension)}$


STRUCTURES / REINFORCED CONCRETE

FACTORED LOADS / MAX. FACTORED MOMENT

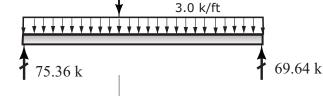
The beam weight will be included in the computations:

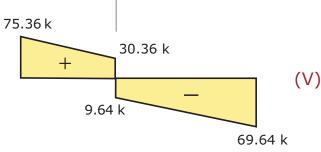

A simply supported R/C beam is loaded as shown. Considering the weight of the concrete beam, the maximum *factored* bending moment (k-ft) is most nearly:



$$M_u = ?$$

FACTORED LOADS / FACTORED MOMENTS




Section

Beam Weight

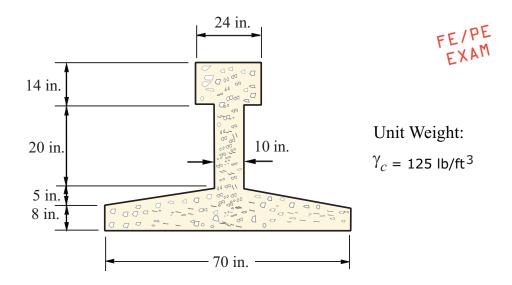
$$BM = \frac{(16)(36)}{144}$$
 (150) = 600 lb/ft = 0.6

Factored Dead Load

$$w_U = 1.2 (0.6 + 1.9) = 1.2 (2.5) = 3.0 \text{ k/ft}$$

Factored Live Load

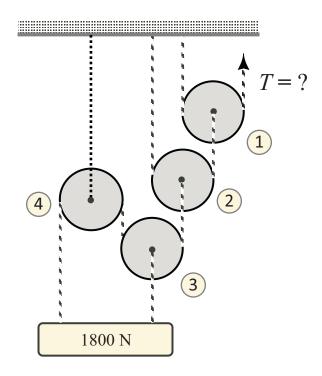
$$w_U = 1.6 (25 \text{ kips}) = 40 \text{ kips}$$


Maximum Factored Moment

$$M_U = 0.5 (15) (75.36 + 30.36) = 792.9 \text{ ft-kips}$$

$$M_{u} = 792.9 \text{ ft-kips}$$

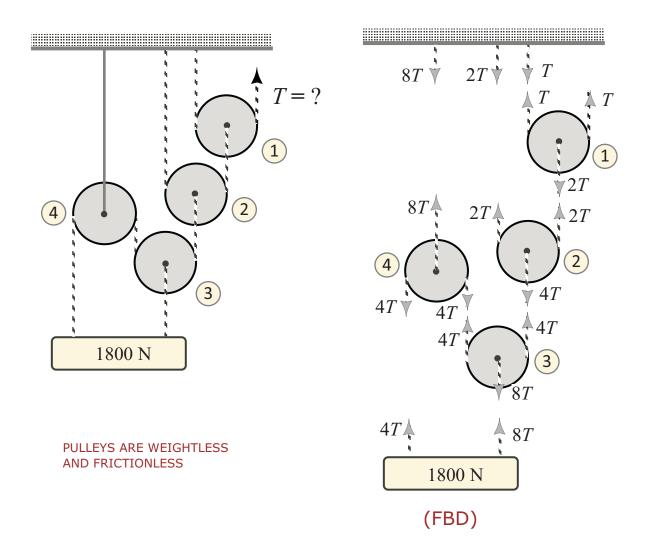
STRUCTURAL ANALYSIS


LOAD ANALYSIS

The dimensions of a light weight reinforced concrete beam section is given as shown in the figure. Using the listed data, answer the following questions:

- (1) The cross-sectional area (ft²) is most nearly:
 - (A) 12.5
 - (B) 10.5
 - (C) 9.0
 - (D) 6.0
- (2) The uniform dead load (lb/ft) is most nearly:
 - (A) 750
 - (B) 825
 - (C) 985
 - (D) 1125

PULLEY SYSTEMS



Four pulley system is used to lift 1800 Newton load as shown in the figure. Knowing that the pulleys are frictionless and weightless, the tension T applied (Newtons) to pulley # 1 is most nearly:

- (A) 100
- (B) 150
- (C) 200
- (D) 225

$$T = ?$$

PULLEY SYSTEMS

Writing the equilibrium equation in vertical direction:

$$\uparrow \Sigma F_y = 0 \longrightarrow 4T + 8 T = 1800$$

$$T = 150 N$$

MATRIX COMPUTATIONS

Problem

$$\mathbf{A} = \begin{bmatrix} 3 & -3 & 2 \\ 2 & 5 & -3 \\ 3 & -1 & 1 \end{bmatrix}$$

For the matrix A is given above, answer the following questions:

- (1) the determinant of the above matrix is most nearly
 - (A) 4
 - (B) 5
 - (C) ϵ
 - (D) 8
- (2) the inverse of matrix A is most nearly, (A^{-1})

(A)
$$A^{-1} = \begin{bmatrix} 1/4 & 1/4 & -1/4 \\ 10/4 & 5/4 & 13/4 \\ -10/4 & -4/4 & 11/4 \end{bmatrix}$$

(B)
$$A^{-1} = \begin{bmatrix} 2/3 & 1/3 & -1/6 \\ -11/3 & -7/3 & 13/3 \\ -17/3 & -8/3 & 32/3 \end{bmatrix}$$

(C)
$$A^{-1} = \begin{bmatrix} 2/5 & 1/5 & 1/5 \\ 11/5 & 3/5 & 13/5 \\ -17/5 & -6/5 & 21/5 \end{bmatrix}$$

(D)
$$A^{-1} = \begin{bmatrix} 2/5 & 1/5 & -1/5 \\ -11/5 & -3/5 & 13/5 \\ -17/5 & -6/5 & 21/5 \end{bmatrix}$$

Example: (Inverse Matrix)

$$A = \begin{bmatrix} 3 & -3 & 2 \\ 2 & 5 & -3 \\ 3 & -1 & 1 \end{bmatrix}$$
 (a) Find the cofactor matrix (b) Find the adjoint matrix (c) Find the inverse matrix

Solution:

$$cof A = \begin{bmatrix} + \begin{vmatrix} 5 & -3 \\ -1 & 1 \end{vmatrix} & - \begin{vmatrix} 2 & -3 \\ 3 & 1 \end{vmatrix} & + \begin{vmatrix} 2 & 5 \\ 3 & -1 \end{vmatrix} \\ - \begin{vmatrix} -3 & 2 \\ -1 & 1 \end{vmatrix} & + \begin{vmatrix} 3 & 2 \\ 3 & 1 \end{vmatrix} & - \begin{vmatrix} 3 & -3 \\ 3 & -1 \end{vmatrix} \\ + \begin{vmatrix} -3 & 2 \\ 5 & -3 \end{vmatrix} & - \begin{vmatrix} 3 & 2 \\ 2 & -3 \end{vmatrix} & + \begin{vmatrix} 3 & -3 \\ 2 & 5 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} 2 & -11 & -17 \\ 1 & -3 & -6 \\ -1 & 13 & 21 \end{bmatrix}$$

$$adj A = \begin{bmatrix} 2 & -11 & -17 \\ 1 & -3 & -6 \\ -1 & 13 & 21 \end{bmatrix}^{T} = \begin{bmatrix} 2 & 1 & -1 \\ -11 & -3 & 13 \\ -17 & -6 & 21 \end{bmatrix}$$

Determinant of the square matrix, det A = |A| = 5

$$A^{-1} = \frac{adj A}{|A|} = \begin{bmatrix} \frac{2}{5} & \frac{1}{5} & \frac{-1}{5} \\ \frac{-11}{5} & \frac{-3}{5} & \frac{13}{5} \\ \frac{-17}{5} & \frac{-6}{5} & \frac{21}{5} \end{bmatrix}$$

Check

$$AA^{-1} = \begin{bmatrix} 3 & -3 & 2 \\ 2 & 5 & -3 \\ 3 & -1 & 1 \end{bmatrix} \begin{bmatrix} \frac{2}{5} & \frac{1}{5} & \frac{-1}{5} \\ \frac{-11}{5} & \frac{-3}{5} & \frac{13}{5} \\ \frac{-17}{5} & \frac{-6}{5} & \frac{21}{5} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{O.K.} \checkmark$$

THE ADJOINT MATRIX (adj A)

Previously we have defined the minors and cofactors. The adjoint matrix, designated by adj A, of a square matrix A is the transpose of cof A.

$$adj A = (cof A)^T$$

Example

$$A = \begin{bmatrix} -2 & 3 & 5 \\ 4 & 7 & -2 \\ 5 & -2 & -9 \end{bmatrix}$$
 (a) Find the cofactor matrix (b) Find the adjoint matrix (c) Find the inverse matrix

$$cof A = \begin{bmatrix} + \begin{vmatrix} 7 & -2 \\ -2 & -9 \end{vmatrix} & - \begin{vmatrix} 4 & -2 \\ 5 & -9 \end{vmatrix} & + \begin{vmatrix} 4 & 7 \\ 5 & -2 \end{vmatrix} \\ - \begin{vmatrix} 3 & 5 \\ -2 & -9 \end{vmatrix} & + \begin{vmatrix} -2 & 5 \\ 5 & -9 \end{vmatrix} & - \begin{vmatrix} -2 & 3 \\ 5 & -2 \end{vmatrix} \\ + \begin{vmatrix} 3 & 5 \\ 7 & -2 \end{vmatrix} & - \begin{vmatrix} -2 & 5 \\ 4 & -2 \end{vmatrix} & + \begin{vmatrix} -2 & 3 \\ 4 & 7 \end{vmatrix} \end{bmatrix} = \begin{bmatrix} -67 & 26 & -43 \\ 17 & -7 & 11 \\ -41 & 16 & -26 \end{bmatrix}$$

$$adj A = \begin{bmatrix} -67 & 26 & -43 \\ 17 & -7 & 11 \\ -41 & 16 & -26 \end{bmatrix}^{T} = \begin{bmatrix} -67 & 17 & -41 \\ 26 & -7 & 16 \\ -43 & 11 & -26 \end{bmatrix}$$

Determinant of this square matrix, det A = |A| = -3

$$A^{-1} = \frac{adj A}{|A|}$$

$$A^{-1} = \begin{bmatrix} \frac{67}{3} & \frac{-17}{3} & \frac{41}{3} \\ \frac{-26}{3} & \frac{7}{3} & \frac{-16}{3} \\ \frac{43}{3} & \frac{-11}{3} & \frac{26}{3} \end{bmatrix}$$
 Check and see if
$$A \cdot A^{-1} = I$$

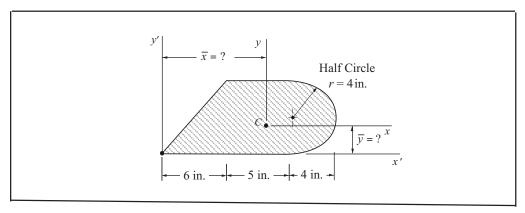
$$A \cdot A^{-1} = I$$

STATICS / MECHANICS OF SOLIDS

CENTROIDS & MOMENTS OF INERTIA

Problem

The dimensions of a composite area is given as shown. Using the given data, answer the following questions:


- (1) the distance y_{bar} (in.) of the centroid is most nearly
 - (A) 6.25
 - 5.50 (B)
 - 4.85 (C)
 - 3.64 (D)
- $\overline{y} = ?$
- (2) the distance x_{bar} (in.) of the centroid is most nearly

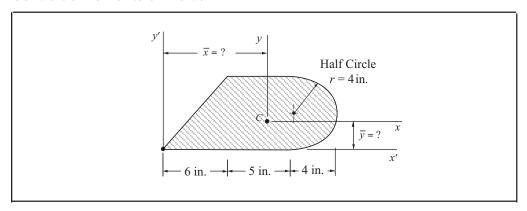
 $\overline{x} = ?$

- (A) 6.25
- 7.50 (B)
- 8.47 (C)
- 9.64 (D)
- (3) the moment of inertia (in⁴) about the *horizontal* centroidal axis is most nearly
 - (A) 430
 - (B) 532
 - (C) 618
 - (D) 630
- $I_{cr} = ?$
- (4) the moment of inertia (in⁴) about the *vertical* centroidal axis is most nearly
 - (A) 2280
 - (B) 1980
 - (C) 1090
 - (D) 1210

Centroid / Moments of Inertia

Centroid Calculations (\bar{x})

	A_{i}	x_{i}	$A_i x_i$
	in. ²	in.	in. ³
1	24.0	4.00	96.00
2	40.0	8.50	340.00
3	25.13	12.7	319.15
Σ	89.13	_	755.15


$$\overline{x} = \frac{\sum A_i x_i}{\sum A_i} = \frac{755.15}{89.13} = 8.47 \text{ in.}$$

Centroid Calculations (\bar{y})

	A_{i}	\mathcal{Y}_{i}	$A_i y_i$
	in. ²	in.	in. ³
1	24.0	2.67	64.08
2	40.0	4.00	160.00
3	25.13	4.00	100.52
Σ	89.13	_	324.60

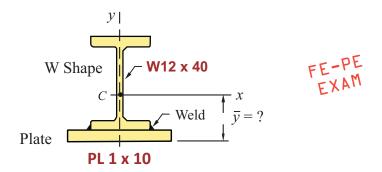
$$\overline{y} = \frac{\sum A_i y_i}{\sum A_i} = \frac{324.60}{89.13} = 3.64 \text{ in.}$$

Centroid / Moments of Inertia

Moment of Inertia Calculations (Ix)

		I_o	A_{i}	d_{i}	$A_i d_i^2$
		in. ⁴	in. ²	in.	in. ⁴
<u></u>	1	85.33	24.00	0.97	22.58
	2	213.33	40.00	0.36	5.18
-	3	100.537	25.13	0.36	3.26
	Σ	399.19		_	31.02

 $I_{cx} = \sum I_o + \sum A_i \cdot d_i^2 = 399.19 + 31.02 = 430.21 \text{ in.}^4$



		I_o	A_{i}	d_i	$A_i d_i^2$
		in. ⁴	in. ²	in.	in. ⁴
4	1	48.00	24.00	4.47	479.5
	2	83.33	40.00	0.03	0.036
\bigcirc	3	28.11	25.13	4.23	449.6
. '	Σ	159.45		_	929.2

 $I_{cy} = \sum I_o + \sum A_i \cdot d_i^2 = 159.4 + 929.2 = 1088.6 \text{ in.}^4$

STATICS / MECHANICS OF SOLIDS

CENTROIDS & MOMENTS OF INERTIA

A W 12×40 section and a plate are welded together to form a composite section as shown. Using the listed data answer the following questions:

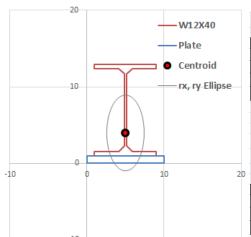
(1) the distance y_{bar} (in.) for the centroid is most nearly

 $\overline{y} = ?$

 $I_{cx}=?$

- (A) 6.0
- (B) 5.5
- (C) 4.6

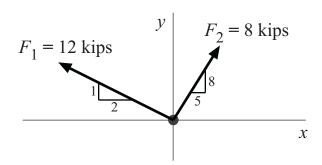
(D)


- 4.6
- (2) the moment of inertia (in⁴) about the *horizontal* centroidal axis is most nearly
 - (A) 429
 - (B) 532
 - (C) 618
 - (D) 630
- (3) the moment of inertia (in⁴) about the *vertical* centroidal axis is most nearly
 - (A) 228.4
 - (B) 132.5
 - (C) 127.5
 - (D) 110.6

SOLUTION

Solution:

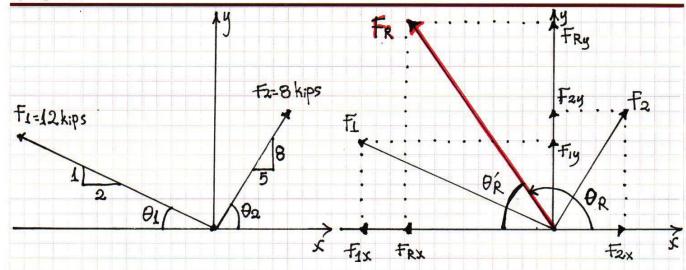
TOP W-SHAPE (1)	W12X40			
ID	Quantity	Symbol	Value	Unit
4	Area	A	11.70	in ²
5	Depth	d	11.90	in
37	x - Moment of Inertia	l _x	307.00	in ⁴
41	y - Moment of Inertia	ly	44.10	in ⁴
BOTTOM - PLATE (2)				
Plate Width (in.)	10			
Plate Thickness (in.)	1			
ID	Quantity	Symbol	Value	Unit
4	Area	Α	10.00	in ²
37	x - Moment of Inertia	l _x	0.83	in ⁴
41	y - Moment of Inertia	l _v	83.33	in ⁴


	A _i (in ²)	y _i (in)	A _i y _i (in ³)	
1	11.70	6.95	81.32	
2	10.00	0.50	5.00	
Σ	21.70		86.32	
	I ₀ (in ⁴)	A _i (in ²)	d _i (in)	A _i d _i ² (in ⁴)
1	I ₀ (in ⁴) 307.00	A _i (in ²) 11.70	d _i (in) 2.97	A _i d _i ² (in ⁴) 103.37
1 2				
1 2 Σ	307.00	11.70	2.97	103.37

COMPOSITE SECTION	PROPERTIE	S		
Area	A =	21.70	in²	
Centroid - y	y _{bar} =	3.98	in	(from bottom)
x - Moment of Inertia	I _x =	532.14	in ⁴	
y - Moment of Inertia	I _y =	127.43	in ⁴	
Total depth	d =	12.90	in	
x - Radius of Gyration	r _x =	4.95	in	
y - Radius of Gyration	r _y =	2.42	in	

STATICS

CONCURRENT FORCES


Problem:

Two forces act as shown in the figure. Using the listed data answer the following:

- (1) The magnitude (kips) of the resultant of the two forces is most nearly:
 - (A) 20.0
 - (B) 12.6
 - (C) 13.8
 - (D) 15.6
- (2) The angle (degrees) of the resultant from the x axis is most nearly:
 - (A) 44
 - (B) 118
 - (C) 86
 - (D) 132
- (3) The vector form (kips) of the resultant is most nearly:
 - (A) -6.5 i + 12.1 j
 - (B) 12.1 i 6.5 j
 - (C) -8.2 i + 14.5 j
 - (D) 8.2 **i** 14.5 **j**

$$\theta_1 = \arctan(\frac{1}{2}) = 26.56^{\circ}$$
 $\theta_2 = \arctan(\frac{8}{5}) = 57.99^{\circ}$

$$F_{1x} = F_{1} \cdot Cos(\theta_{1}) = 12 \cdot Cos(26.56) = 10.73 \text{ kips}$$

 $F_{1y} = F_{1} \cdot Sin(\theta_{1}) = 12 \cdot Sin(26.56) = 5.36 \text{ kips}$
 $F_{2x} = F_{2} \cdot Cos(\theta_{2}) = 8 \cdot Cos(57.99) = 4.24 \text{ kips}$
 $F_{2y} = F_{2} \cdot Sin(\theta_{2}) = 8 \cdot Sin(57.99) = 6.78 \text{ kips}$

- Absolute Values

$$\Xi + y = 0 \Rightarrow F_{1y} + F_{2y} - F_{Ry} = 0 \Rightarrow F_{Ry} = 5.36 + 6.78 \Rightarrow F_{Ry} = 12.14 \text{ kips}$$

$$F_{R} = \sqrt{(F_{Ry})^2 + (F_{Ry})^2} = \sqrt{(12.14)^2 + (-6.49)^2} \Rightarrow F_{R} = 13.77 \text{ kips}$$

AHSWERS

This solution was excellent!

V. Plevris

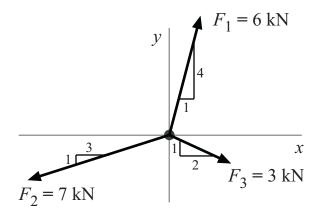
STATICS
CONCURRENT FORCES


Problem: CRF-700 Solution in MS Excel

F	Magnitude	dx	dy	F _x	F _y
1	12	-2	1	-10.73	5.37
2	8	5	8	4.24	6.78

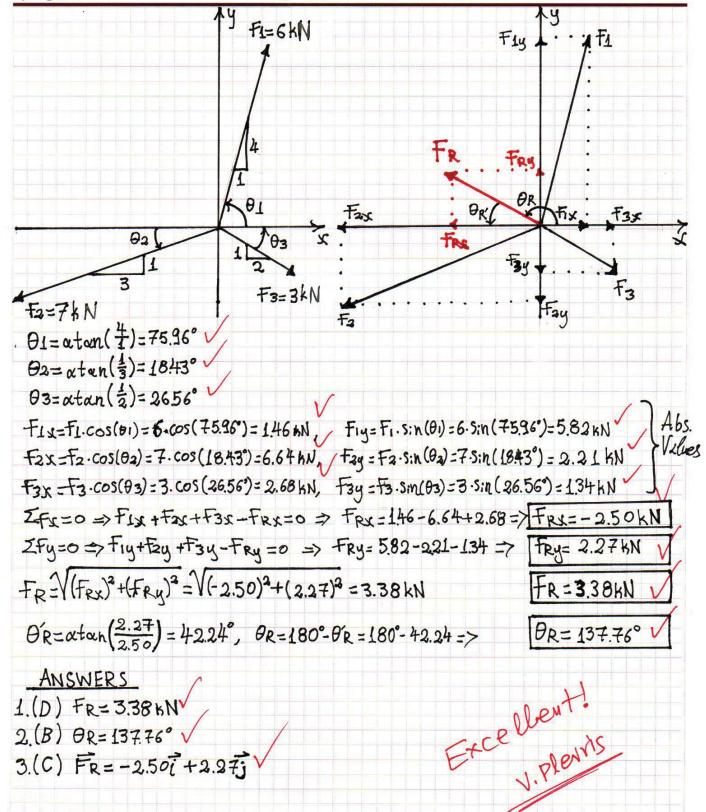
 $\Sigma F = -6.49$ 12.15

F_R = **13.78**


 ϑ = 118.12 degrees

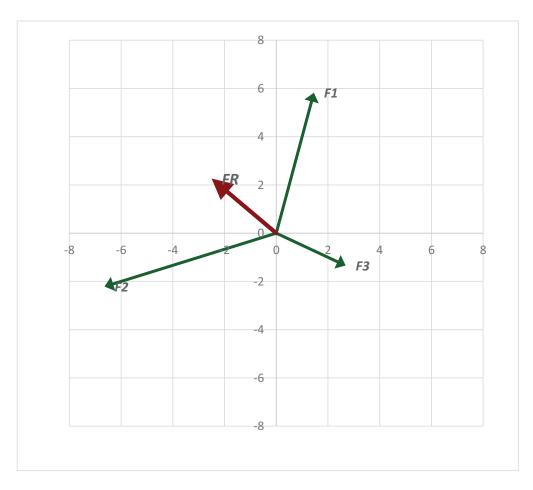
STATICS

CONCURRENT FORCES


Problem:

Three forces act as shown in the figure. Using the listed data answer the following:

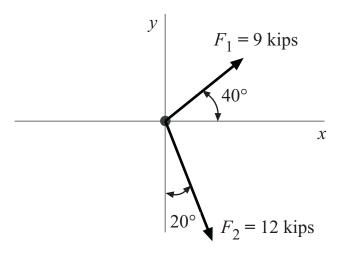
- (1) The magnitude (kN) of the resultant of the three forces is most nearly:
 - (A) 4.6
 - (B) 1.2
 - (C) 6.8
 - (D) 3.4
- (2) The angle (degrees) of the resultant from the x axis is most nearly:
 - (A) 164
 - (B) 138
 - (C) 123
 - (D) 85
- (3) The vector form (kN) of the resultant is most nearly:
 - (A) -4.2 i + 3.1 j
 - (B) 3.3 i 4.2 j
 - (C) -2.5 i + 2.3 j
 - (D) 6.0 **i** 2.6 **j**


STATICS
CONCURRENT FORCES

Problem: CRF-702 Solution in MS Excel

F	Magnitude	dx	dy	F _x	Fy
1	6	1	4	1.46	5.82
2	7	-3	-1	-6.64	-2.21
3	3	2	-1	2.68	-1.34

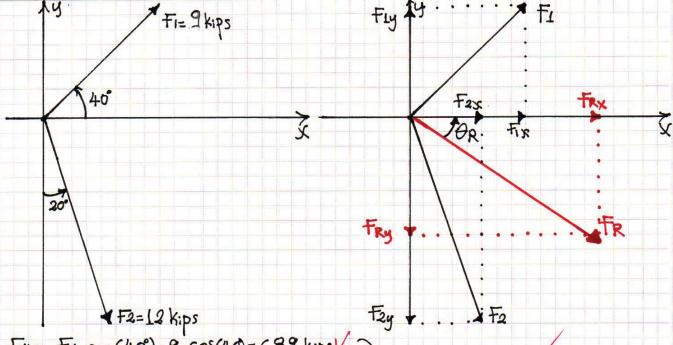
$$\Sigma F = -2.50$$
 2.27


 $\vartheta = 137.84$ degrees

STATICS

CONCURRENT FORCES

Problem:


Two forces act as shown in the figure. Using the listed data answer the following:

- (1) The magnitude (kips) of the resultant of the two forces is most nearly:
 - (A) 10.4
 - (B) 13.2
 - (C) 11.0
 - (D) 12.3
- (2) The angle (degrees) of the resultant from the x axis is most nearly:
 - (A) -21
 - (B) -15
 - (C) -5
 - (D) -27
- (3) The vector form (kN) of the resultant is most nearly:
 - (A) 10.3 i + 7.7 j
 - (B) 11.0 i 5.5 j
 - (C) 12.5 i + 4.8 j
 - (D) 11.9 i 2.4 j

COMPLETE SOLUTION

Fix=F1.cos(40)=9.cos(40)=6.89 kips V F14=F1.5:n(400)=9.5:n(40)=5.79 kips / Absolute Values Fax = Fa. Sin (20°) = 12. Sin (20°) = 4.10 kips Fay = Fa · cos (20") = 12 · cos (20") = 11.28 kips

Zfx=0 => F1x+F2x-FRx=0 => FRx= 6.89+4.10 => FRx= 10.99 kips Zfy=0 > Fly+F2y-FRy=0 > FRy= 5.79-11.28=> FRy=-5.49 Kips FR= > (FRX)2+(FRY)2 = > (10.99)2+(-5.49)2 => FR= 12.28 kips

OR = atan (5.49) = 26.54°

DR= 26.54°

ANSWERS

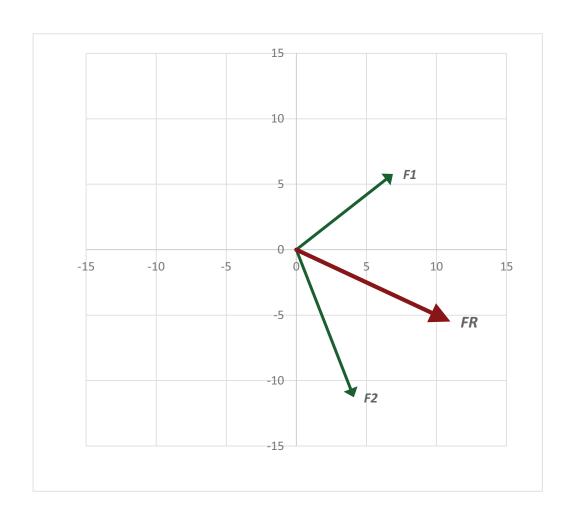
1.(D) FR=12.28 kips

2. (D) OR = 26.54°

3.(B) FR = 10.99[-5.49]

Great job!

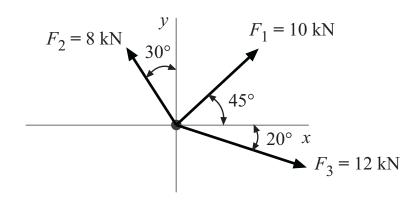
STATICS


CONCURRENT FORCES

Problem: CRF-704 Solution in MS Excel

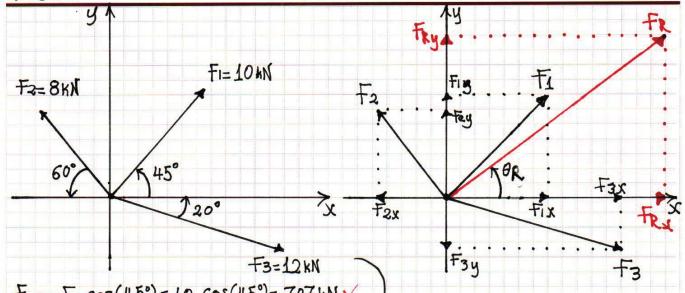
F	Magnitude	Direction (deg)	F _x	F _y
1	9	40	6.89	5.79
2	12	-70	4.10	-11.28

$$\Sigma F = 11.00 -5.49$$


$$\vartheta = -26.53$$
 degrees

STATICS

CONCURRENT FORCES


Problem:

Three forces act as shown in the figure. Using the listed data answer the following:

- (1) The magnitude (kN) of the resultant of the three forces is most nearly:
 - (A) 13.3
 - (B) 15.2
 - (C) 17.4
 - (D) 19.6
- (2) The angle (degrees) of the resultant from the x axis is most nearly:
 - (A) 55
 - (B) 44
 - (C) 35
 - (D) 16
- (3) The vector form (kN) of the resultant is most nearly:
 - (A) 14.3 i + 9.9 j
 - (B) 11.2 i + 8.5 j
 - (C) 10.5 i + 6.9 j
 - (D) 13.1 i + 7.2 j

Fix= Fi. cos (45°) = 10. cos (45°) = 7.07 kN V Fig = Fi. sin (45) = 10. Sin (45) = 7.07 kN F2x=F2. cos(60°)=8.cos(60°)=4.00 kN F24=F2. sin(60°)=8. sin(60°)=6.93kN

F3x=F3. COS(20°)=12. COS(20°)=11.28 hN F34=F3.Sin(20°)=12.Sin(20°)=4.LOKNV

Absolute Values

IFx=0 => F1x +F2x +F3x -FRx=0 => FRx= 7.07-4.00+11.28 => FRx=14.35 KN ZFy=0 => Fly +F2y +F3y-FRy=0 > FRy= 7.07+6.93-410 > FRy= 9.90 kN

 $F_R = \sqrt{(F_{Rx})^2 + (F_{Ry})^2} = \sqrt{(14.35)^2 + (9.90)^2} = 17.43 \, \text{kN}$

FR=17.43 KN

 $\Theta R = a t \propto n \left(\frac{9.90}{(435)} \right) = 34.60^{\circ}$

OR= 34.60°

ANSWERS

1.(C) FR=17.43KN

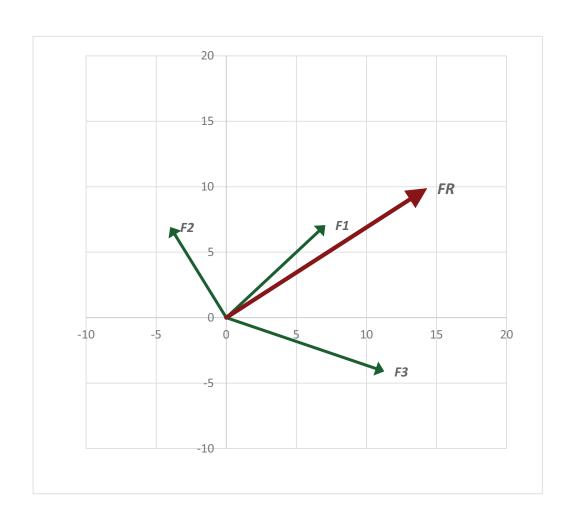
2.(C) OR = 34.60°

3.(A) FR = 14.35 + 9.90 j

Excellent solution Plevris

STATICS

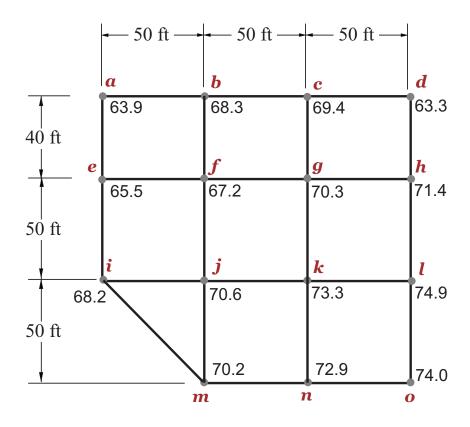
CONCURRENT FORCES


Problem: CRF-706 Solution in MS Excel

F	Magnitude	Direction (deg)	F _x	F _y
1	10	45	7.07	7.07
2	8	120	-4.00	6.93
3	12	-20	11.28	-4.10

$$\Sigma F = 14.35 \quad 9.90$$

$$F_R = 17.43$$


$$\vartheta = 34.59$$
 degrees

VOLUME COMPUTATIONS

BORROW PITS

Problem: (Borrow Pit)

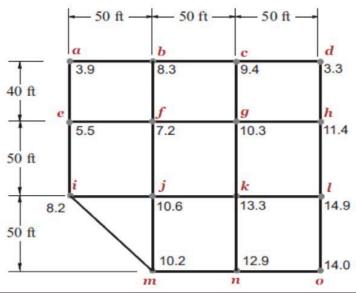
The final elevation of the area level is desired to be **60.0**. The numbers shown are the elevations of the corners (ft)

and the *balance factor* will be neglected.

An area has been laid out as shown above. The volume of cut in cubic yards to grade the area level to the final elevation of **60.0** ft is most nearly:

- (a) 6824
- (b) 7195
- (c) 6981
- (d) 7404

SOLUTION NEXT PAGE



VOLUME COMPUTATIONS BORROW PITS

Problem: BRRW-16 Solution in MS Excel

Since elevations are given, we need to determine the Corner Cuts (CC)

as show below:

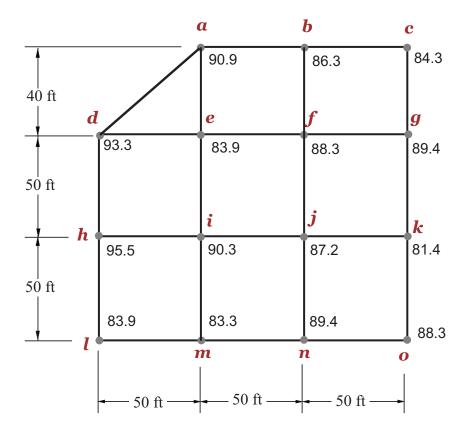
Figure	Sum of Corner Cuts (ft ²)	Area of Figure (ft ²)	Multiplier (1/4 or 1/3)	Volume (ft³)
adhe	94.5	2000	0.25	47,250.00
ehonmji	224.9	2500	0.25	140,562.50
ijm	29	1250	0.333333333	12,083.33

Sum = 199,896 ft³

 $V \approx 7,404 \text{ yd}^3$

Analytical calculations (Sum of Corner Cuts):

94.5 = 3.9+8.3*2+9.4*2+3.3+11.4+10.3*2+7.2*2+5.5


224.9 =5.5+7.2*2+10.3*2+11.4+14.9*2+14+12.9*2+10.2+10.6*3+8.2+13.3*4

29 =8.2+10.6+10.2

VOLUME COMPUTATIONS

BORROW PITS

Problem: (Borrow Pit)

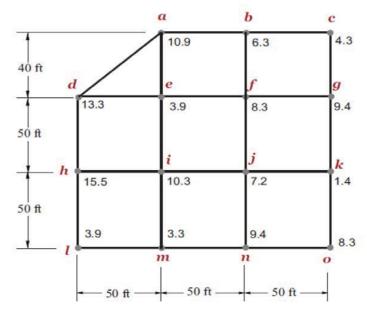
The final elevation of the area level is desired to be **80.0**.

The numbers shown are the elevations of the corners (ft) and the *balance factor* will be neglected.

An area has been laid out as shown above. The volume of cut in cubic yards to grade the area level to the final elevation of **80.0** ft is most nearly:

- (a) 5973
- (b) 5789
- (c) 5514
- (d) 6138

SOLUTION NEXT DAGE



VOLUME COMPUTATIONS BORROW PITS

Problem: BRRW-18 Solution in MS Excel

Since elevations are given, we need to determine the Corner Cuts (CC)

as show below:

Figure	Sum of Corner Cuts (ft²)	Area of Figure (ft²)	Multiplier (1/4 or 1/3)	Volume (ft³)		
acge	57.7	2000	0.25	28,850.00		
dgol	188.5	2500	0.25	117,812.50		
aed	28.1	1000	0.333333333	9,366.67		

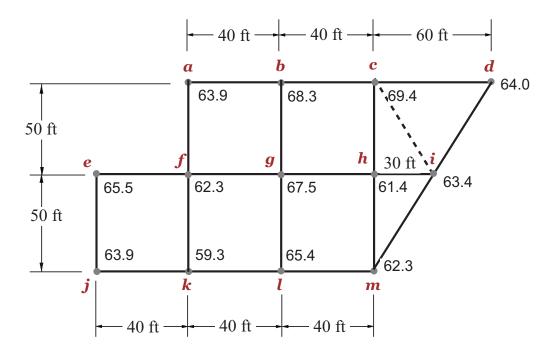
Sum = 156,029 ft³

 $V \approx 5,779 \text{ yd}^3$

Analytical calculations (Sum of Corner Cuts):

57.7 =10.9+6.3*2+4.3+9.4+8.3*2+3.9

188.5 =13.3+3.9*2+8.3*2+9.4+1.4*2+8.3+9.4*2+3.3*2+3.9+15.5*2+10.3*4+7.2*4


28.1 =13.3+10.9+3.9

BRRW-18-Ans PLEVRIS FALL 2015

VOLUME COMPUTATIONS

BORROW PITS

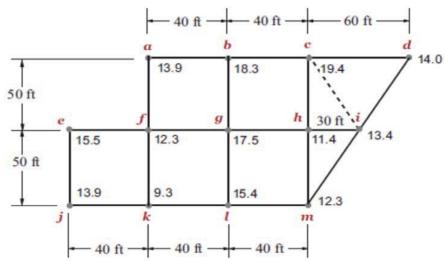
Problem: (Borrow Pit)

The final elevation of the area level is desired to be **50.0**.

The numbers shown are the elevations of the corners (ft) and the *balance factor* will be neglected.

An area has been laid out as shown above. The volume of cut in cubic yards to grade the area level to the final elevation of **50.0** ft is most nearly:

- (a) 7148
- (b) 6802
- (c) 7003
- (d) 6912


SOLUTION NEXT PAGE

VOLUME COMPUTATIONS BORROW PITS

Problem: BRRW-20 Solution in MS Excel

Since elevations are given, we need to determine the Corner Cuts (CC) as show below:

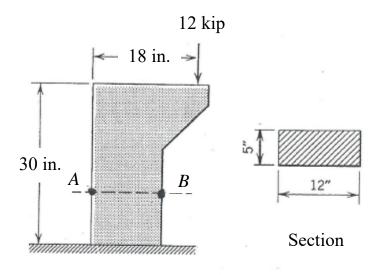
Figure	Sum of Corner Cuts (ft²)	Area of Figure (ft²)	Multiplier (1/4 or 1/3)	Volume (ft³)
acmjef	290.7	2000	0.25	145,350.00
cdi	46.8	1500	0.333333333	23,400.00
cih	44.2	750	0.333333333	11,050.00
him	37.1	750	0.333333333	9,275.00

Sum = *189,075* ft³

 $V \approx 7,003 \text{ yd}^3$

Analytical calculations (Sum of Corner Cuts):

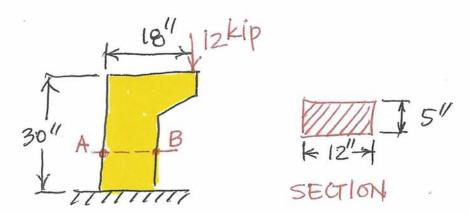
290.7 =13.9+18.3*2+19.4+11.4*2+12.3+15.4*2+9.3*2+13.9+15.5+12.3*3+17.5*4


46.8 =19.4+14+13.4

44.2 =19.4+13.4+11.4

37.1 =11.4+13.4+12.3

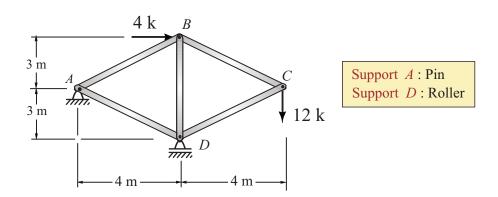
MECHANICS OF SOLIDS


COMBINED STRESS (N + M)

A 30-in. long post is loaded as shown in the figure. Using the the given cross-section answer the following:

- (A) The normal stress (psi) at point A is most nearly:
 - (A) 1000 (T)
 - (B) 1250 (T)
 - (C) 1000 (C)
 - (D) 1250 (C)
- (B) The normal stress (psi) at point B is most nearly:
 - (A) 1400 (T)
 - (B) 1900 (T)
 - (C) 1400 (C)
 - (D) 1900 (C)

Problem: (combined Stress)

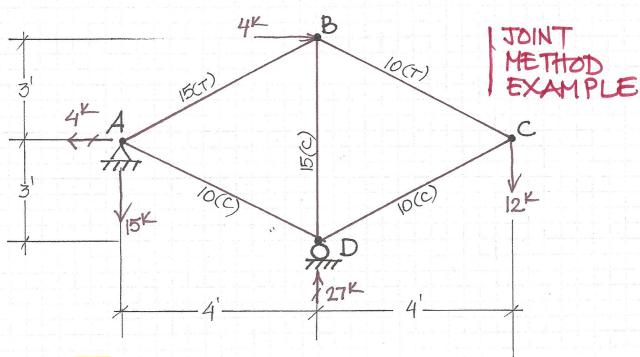


Determine the distribution of normal Stress on section AB.

(1) Normal stress at point A |P=121000 LB| |M=121000 (12'') = 144,000 LB/IN| $|A=(5)(12)=60 \text{ in}^{2}|$ $|I=(5)(12)^{3}/12=720 \text{ in}^{4}|$ $|T=(5)(12)^{3}/12=720 \text{ in}^{4}|$ $|T=(5)(12)^{3}$

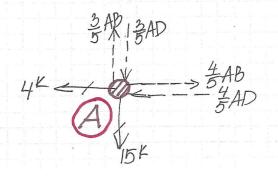
STATICS / MECHANICS OF MATERIAL

DETERMINATE TRUSSES


A plane truss system is loaded as shown. Using the listed data and the support conditions, answer the following questions:

- (1) the member force (kN) in member AB is most nearly
 - (A) 25.00 (C)
 - (B) 20.25 (T)
 - (C) 18.00 (C)
 - (D) 15.00 (T)

 $F_{AB} = ?$

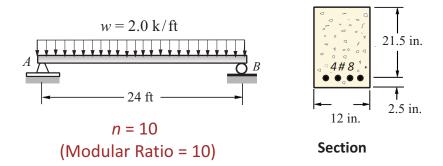

 $F_{AD} = ?$

- (2) the member force (kN) in member AD is most nearly
 - (A) 35.00 (C)
 - (B) 25.25 (T)
 - (C) 10.00 (C)
 - (D) 12.00 (T)
- (3) the member force (kN) in member BD is most nearly
 - (A) 15.00 (C)
 - (B) 20.00 (T)
 - (C) 22.00 (C)
 - (D) 26.00 (T)

A ZM=0 (4K)(3') + (12K)(8') = 4Dy 12+96=4 Dy Dy=27 K 1

[EM=0 (12K)(4')+ (4K)(6')-(4K)(3')=4Ay 48+24-12 = 4Ay Ay=+15K1

0.6X + 0.6Y = 15 0.8X - 0.8Y = 4


$$+1 \overline{\Sigma} \overline{F} y = 0$$

 $0.6Ab + 0.6AD = 15$
 $0.8Ab - 0.8AD = 4$
 $0.6X + 0.6Y = 15$
 $0.8X - 0.8Y = 4$

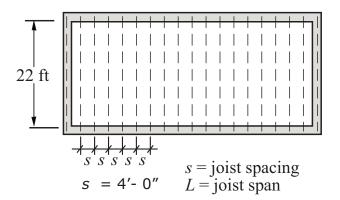
 $\frac{4bC}{4cD} = -\frac{1}{2}C$ $\frac{4bC}{4cD} = -\frac{1}{2}C$ $\frac{4cD}{6}C$ $\frac{4$

PROPERTY FELL

TRANSFORMED AREA METHOD

REINFORCED CONCRETE BEAM

A reinforced concrete beam is loaded as shown in the figure. Assume the weight of the beam is included in the uniform load and the sections have *cracked*. Using the Transformed Area Method (*TAM*), answer the following:


- (1) the max. compressive stress (psi) in concrete is most nearly
 - (A) 2400
 - (B) 2250
 - (C) 2140
 - (D) 1850
- $f_c = ?$
- (2) the max. tensile stress (psi) in steel is most nearly
 - (A) 32,600
 - (B) 29,400
 - (C) 26,350
 - (D) 24,500

DESIGN OF STEEL STRUCTURES

OPEN WEB STEEL JOISTS

Problem:

JORDAN MATTHEWS

4" Floor Slab (R/C)
Other Dead Load = 8 psf
Live Load = 60 psf
Max. LL Deflection = L / 360

$$L = 22' - 0''$$

 $S = 4' - 0''$

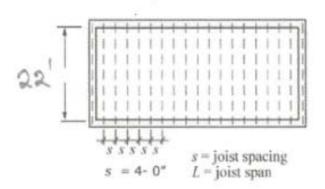
A floor system consists of open-web steel joists spaced at 4 ft and spanning 22 ft as shown in figure. Assume the slab provides continuous lateral support. Using the listed data and the attached joist table from SJI, answer the following:

- (1) Total factored uniform load (lb/ft) on one joist is most nearly
 - (A) 780
 - (B) 682
 - (C) 554
 - (D) 480
- (2) The most economical K-series joist using the SJI's joist tables
 - (A) 12K5
 - (B) 14K4
 - (C) 16K5
 - (D) 20K3

STANDARD LOAD TABLE FOR OPEN WEB STEEL JOISTS

K-SERIES

LRFD


Designation Depth (in.) 10 12 12 12 14 14 14 14 16 16 16 16																
Joist																
Designation Depth (in.) 10 12 12 12 14 14 14 14 16 16 16 16		Ба	Jeu Oil	A 00 K3	WIGAIIII	um men	a Streng	Juli - 200	103 3110	WIII III I	Julius I	er Line	ai i oot	(PIII)		
Approx. Wt (lbs./ft.) Span (ft.) 10 825 11 825 12 825 825 825 825 455 550 550 550 550 13 718 825 825 825 825 14 618 750 825 825 825 15 537 651 814 825 825 825 825 16 469 570 714 825 825 825 825 17 415 504 630 825 825 825 825 17 415 504 630 825 325 825 825 825 825 825 825 825 825 825 8		10K1	12K1	12K3	12K5	14K1	14K3	14K4	14K6	16K2	16K3	16K4	(16K5)	16 K 6	16K7	16K9
(lbs/ft.)	Depth (in.)	10	12	12	12	14	14	14	14	16	16	16	16	16	16	16
10 825 11 825 12 825 825 825 825 13 77 831 825 825 825 825 825 825 825 825 825 825	(lbs./ft.)	5.0	5.0	5.7	7.1	5.2	6.0	6.7	7.7	5.5	6.3	7.0	7.5	8.1	8.6	10.0
11 825	. ↓															
12 825		550														
13		542														
14 618 750 825	12		550	550												
289 425 463 463 550 <td></td> <td>363</td> <td></td>		363														
15 537 651 814 428 434 4475 507 507 507 507 16 469 570 714 825 672 825 825 825 825 825 825 825 825 825 82	14															
16	15	537	651	814		766	825	825	825							
17	16	469	570	714	825	672	825	825	825							825 550
18 369 448 561 760 528 661 795 825 684 762 825	17	415	504	630	825	592	742	825	825	768	825	825	825	825	825	825 526
19 331 402 502 681 472 592 712 825 612 682 820 825 825 825 825 825 825 825 825 825 825	18	369	448	561	760	528	661	795	825	684	762	825	825	825	825	825 490
20	19	331	402	502	681	472	592	712	825	612	682	820	825	825	825	825 455
21 327 409 555 385 483 582 712 499 556 670 754 822 825 8 123 153 198 170 212 248 299 255 285 333 77 405 406 4 22 298 373 505 351 439 529 648 454 505 609 687 747 825 8 106 132 172 147 184 215 259 222 247 289 323 351 385 3 23 271 340 462 321 402 483 552 415 462 556 62 682 760 8	20	298	361	453	613	426	534	642	787	552	615	739	825	825	825	825 426
22 298 373 505 351 439 529 648 454 505 609 687 747 825 8 106 132 172 147 184 215 259 222 247 289 323 351 385 3 271 340 462 321 402 483 592 415 462 556 627 682 760 8	21	31	327	409	555	385	483	582	712	499	556	670	754	822	825	825 406
23 271 340 462 321 402 483 592 415 462 556 627 682 760 8 93 116 150 128 160 188 226 194 216 252 282 307 339 3	22		298	373	505	351	439	529	648	454	505	609	687	747	825	825 385
	23		271	340	462	321	402	483	592	415	462	556		682	760	825 363
24 249 312 423 294 367 442 543 381 424 510 576 627 697 8	24		249	312	423	294	367	442	543	381	424	510	576	627	697	825 346
25 270 339 408 501 351 390 469 529 576 642 7	25					270	339	408	501	351	390	469	529	576	642	771 311
26 249 313 376 462 324 360 433 489 532 592 7	26					249	313	376	462	324	360	433	489	532	592	711 276
27 231 289 349 427 300 334 402 453 493 549 6	27					231	289	349	427	300	334	402	453	493	549	658 246
28 214 270 324 397 279 310 373 421 459 510 6	28					214	270	324	397	279	310	373	421	459	510	612 220
29 289 348 391 427 475 5	29						- 00	100	124		289	348	391	427	475	570 198
30 241 270 324 366 399 444 5	30										270	324	366	399	444	532 178

DESIGN OF STEEL STRUCTURES

QUIZ

April 3, 2014

JORDAN

Floor Slab (R/C)
Other Dead Load = 8 psf
Live Load = 60 psf
Max. LL Deflection = L/360

A floor system consists of open-web steel joists spaced at 4 ft and spanning 2% ft as shown in figure. Assume the slab provides continuous lateral support. Using the listed data select a K-series joist.

weight of floor slab : 4/2 f Other dead load : 8psf joi	t × 150 lb/ft = 50 psf ist weight: 4.0 psf (estimate)
Total Dead Load: 620 psf Uniform Dead Load (2002) 200 = DL x joint specing 1 = 62.0 psf x 4.0ft Uniform Live Load (2012) 2012 = LL x joint specing = 00 psf x 4.0ft = 240 lb/ft Factored Load (2012) 2012 = 1.2 Was + 1.10 rules	Span: L=22ft 12K5 X Wa = 681.6 lb/ft 14K6 X 16K5 (weight = 7.5 lb/ft) **No restriction was placed on depth so we choose 16K5, which has a lood carrying capacity of 687 lb/ft > 681.616/ft Approx. Weight of 16K3 Weight = 7.5/4 = 1.87 psf < 4 psf (initial estimate) Live Load Deflection 16K5 L=22ft 323
= 1.2 (248) + 1.6 (240) V = 681.6 16/4	Max. Live Load Deflection = L/360 = 20/360 = 0.06ft From joint table: (LLmax) = 323 lb/ft Service Live Load = 240 lb/ft V 323 lb/ft > 240 lb/ft (OK) V USE 16K5 STEEL JOIST V SOULTION